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Examples

Weather forecast

Traffic jam forecast

Stock price prediction

Trajectory estimation
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Preliminaries on neural networks

A neural network unit:
H = X
wav) =o( W xv+ D)
ERNHX? ERNnxl

A multilayer neural network with linear output:

ug(v) =W x Hg, ,oHy, ,0---0Hp (v)+Db

Theorem: Universal approximation (K. Hornik)

A neural network can approximate any smooth function arbitrarily close provided
a sufficient number of neurons V,,.




Preliminaries on neural networks

A neural network unit:
H = W X b
wp(v) = ¢( I xv+ b )
E]RNnX? ERNTLX1

A multilayer neural network with linear output:

UQ(V) =W X H9L71 O H9L72 O---0 H91 (V) +b

Proposition: Backpropagation (D. Rumelhart, G. Hinton & R. Williams)

Provided ¢ is differentiable, the backpropagation algorithm makes it possible to

symbolically computes any derivative of uy and in particular, %.




Data-driven versus Model-based

Example: Traffic density estimation

Density

o7 » 2-D map (spatiotemporal diagram)
°¢  » colormap = density

» Black dots are measurements (sparse)

Position [km]

0.00 0.25 0.50 0.75 1.00 125 150 175 2.00
Time [h]

Real density - Simulation
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Example: Traffic density estimation

Estimated Density
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Example: Traffic density estimation

Estimated Density

o7 » 2-D map (spatiotemporal diagram)
°¢  » colormap = density
g »»  » Black dots are measurements (sparse)
£ ** » Model for traffic
b ou ou
02 7+V 1—2u)— =0
gt Vit ) 9

Time [s]

Estimated density - Model



Example: Traffic density estimation

Density
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> » 2-D map (spatiotemporal diagram)
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1500

Position [m]
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Data-driven versus Model-based

Example: Traffic density estimation

Estimated Density

v

2-D map (spatiotemporal diagram)

v

colormap = density

v

Black dots are measurements (sparse)
Model for traffic
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Position [m]
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200 400 600 800
Time [s]

Estimated density - Model



Data-driven versus Model-based

Data-driven

© Good estimation if large dataset
© Robust to noise and disturbances
© No curse of dimensionality

© Can infer hidden pattern

@ Large computational time

@ No convergence proof

@ Require a large dataset
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Data-driven versus Model-based

Data-driven Model-based
© Good estimation if large dataset ©® No measurements needed
© Robust to noise and disturbances © Fast to compute
© No curse of dimensionality @ Error bounds on the solution
© Can infer hidden pattern © Sometimes not robust to noise
@ Large computational time @ Require a precise model
@ No convergence proof @ Subject to curse of dimensionality
@ Require a large dataset

Can we use both Data-driven and Model-based simulation tools?
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Physics-Informed Neural Network (PINN)

Machine Learning Differential Equation
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Machine Learning Differential Equation
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Optimize a PINN
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Optimize a PINN
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Optimize a PINN
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Optimize a PINN
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Optimize a PINN
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» Primal-dual optimization can solve the previous problem:
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Optimize a PINN

N,

2 phy
*__ u@(tu l'L) - yz) 1 Oug
0" = argming , max E N + )\N BN

=1 phy ]_

2
%0 1p w0y 4 [ueutﬁ’,wf))

= argming , max L(0)

» Primal-dual optimization can solve the previous problem;
» About the number of physics points Ny,

* New dataset: NV + Nppy;
e The confidence in the model relates to the number of physics points;

» The operator NV, can be defined with uncertain parameters = identification.
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PINN example: Traffic density estimation

Density

s » 2-D map (spatiotemporal diagram)

» colormap = density

Position [m]

» Black dots are measurements (sparse)
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PINN example: Traffic density estimation

Estimated Density

v

2-D map (spatiotemporal diagram)

v

colormap = density

v

Black dots are measurements (sparse)
Model for traffic
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PINN example: Traffic density estimation

Estimated Density

v

2-D map (spatiotemporal diagram)

v

colormap = density

v

Black dots are measurements (sparse)
Model for traffic

v

Position [m]

200 400 600 800
Time [s]

Estimated density - PINN



Advantages and drawbacks of PINN

PINN summary

© Good estimation with small/large
dataset

© Robust to noise and disturbances
© No curse of dimensionality

© Can infer hidden pattern

© Model tuning

© Large computational time

@ No convergence proof



Advantages and drawbacks of PINN

PINN summary Challenges

© Good estimation with small/large » Improve the convergence
dataset ¢ Less stochastic output (robust w.r.t.
© Robust to noise and disturbances training)
] _ _  Fastest convergence

©® No curse of dimensionality « Conditions for convergence
© Can infer hidden pattern » Prove approximation capacity for a
© Model tuning broader class of operators A
@ Large computational time » Solve strongly coupled systems

@ No convergence proof (multiple PDEs)



Perspectives for PINN

General perspectives:
» Investigate other neural network architectures (LSTM, Convolutional network ...);
» Change the training procedure (primal-dual update, ...)

» Use confidence intervals over several optimizations
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10/11



Perspectives for PINN

General perspectives:
» Investigate other neural network architectures (LSTM, Convolutional network ...);
» Change the training procedure (primal-dual update, ...)
» Use confidence intervals over several optimizations
Control perspectives:
» Extend the current work to real-time observation
» Use reinforcement learning to compute a control action
Broader perspectives:

» Use the PINN methodology in other domains (fluid mechanics, signal processing,
astrology...)

» Increment the framework for use in different contexts (?)
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