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Examples

Weather forecast

Traffic jam forecast

Stock price prediction

Trajectory estimation

1/11




Machine learning to solve PDEs?

JOURNAL OF COMPUTATIONAL PHYSICS 91, 110-131 (1990)

Neural Algorithm for Solving Differential Equations
Hyuk LEg

Department of Electrical Engineering, Polytechnic Institute of New York,
Brouvklyn, New Yurk 11201

AND

IN SEOK KANG

Department of Chemical Eng g, California Institute of Tech i
Pasadena, California 91125

Received August 17, 1988; revised October 6, 1989




Machine learning to solve PDEs?

JOURNAL OF COMPUTATIONAL PHYSICS 91, 110-131 (1990)

Neural Algorithm for Solving Differential Equations

HYUK LEE

Department of Electrical Engineering, Polytechnic Institute of New York,
Artificial Neural Networks for Solving Ordinary Brovklyn, New York 11201
and Partial Differential Equations

Tsuac Eliss Lugaris, Arstdis Likas. Membor, IEEE. and Disuitios 1. Fotiadis AND

Y of a fecdforward neursl network by replacing <ach spline IN SEOK KANG

Doy conions nd o, SOOI [0 1 Bdden ks, Tl et comers ot

Fosuntar coioms T et vl COBSEGUEAIY nenvork paramerrs) i oder o vield sccure Department of Chemical Eng g, California Institute of Technology,
ions. Fsthcnmre.

= fo mulidimenson domains. Pasadena, California 91125

In this aricle we view the problem from a diffsrent angle.
We present 2 method for solving both ordinary differenrial

Sl ey Oyl cquaions (ODE B 1o 5 . ¢
ot DD 2 a ek el etios PDE-9, i (ODE's) 34 patal ifenial <uacas (PDE'S) 5 3

5 x Vi t 17, 1988; revised October 6, 1989
o o, e S o b by <o 5 v 1 deBned o ologonal e domtas e e on e Rction
‘model problemns and present comparisons i solufions obfained  approimation capabiliies of feedforward neural networks
i e Gt e et e o v w8

and results in the construction of 2 solution Writen in &




Neural-Network Methods for Boundary Value
Problems with Irregular Boundaries

Isaac Elias Lagaris, Aristdis C. Likas, Member, /EEE, and Dimitrios G. Papageorgion

conditions (Divichlt or Neumans) defined on boundusies with
&

he
dctermined by a mumber of poats hat belang (0 it aud are closely
Iocated, 50 a5 0 ofer @ reasouable representation. Tna netvorks

1) infinsely analytic form:

2 superior ntespolation properties s conpired to well-cs-
tablished methods such as finie stements (1], (21

3) small susuber of parameters:

4 suitability for effcient implementation on paraliel com-
puters:

Artificial Neural Networks for Solving Ordinary
and Partial Differential Equations

Tsaae Elins Lagaris. Avistdis Likas. Member, IEEE, and Dimitrios T Fotiadis

o o e i

Astracr—We present o
roblems usin

ialbuuadary conditions This par imvolses
2 ferdtorward newral

lution i the sum of piccewise fincar sctivation fnlic

comequety nnvork paraneers) n order to vied accurte

upIed ODE's s 0 paal Gl cqunions (PDE"
In The avtce, we fustrace e method

ol prables and present cmparisonsvith seloions obraned
wing the Galekekin Baite cloment method for severl cases of

Saling 3 variery of (el

e et o
e

I this article we view the problem from a different anle.

approsisation capabiltes of feedforward newal nevworks
and results in the construction of 2 solution Writen in &

Machine learning to solve PDEs?

RNAL OF COMPUTATIONAL PHYSICS 91, 110-131 (1990)

Neural Algorithm for Solving Differential Equations
HYUK LEE

Department of Electrical Engineering, Polytechnic Institute of New York,
Brouvklyn, New York 11201

AND

IN SEOK KANG

Department of Chemical Eng g, Calif Institute of Tech 1
Pasadena, California 91125

Received August 17, 1988; revised October 6, 1989




Machine learning to solve PDEs?

L5 TRARSACHONS 3 L RAL SSTORKS Y01 150 5 SEFTRNGER 00 RNAL OF COMPUTATIONAL PHYSICS 91, 110-131 (1990)

Neural-Network Methods for Boundary Value
Problems with Irregular Boundaries
I Flns Lagaris, Arsidis C. Likss, Member 2EE, and Dimitios . Papaseorsion

1 sty [ Neural Algorithm for Solving Differential Equations

condiions (Dirichlt or Neumann) defincd o boundasies with ) superior erpolation propertes as copared f0 wellgs-
& tablished methods such as finie stements (1], (21

e caeofcomples bounday gt where e boundar b et mplemnation o pallcom HYUK LEE

Department of Electrical Engineering, Polytechnic Institute of New York,
Artificial Neural Networks for Solving Ordinary Brovklyn, New York 11201
and Partial Differential Equations

Tsaae Elins Lagaris. Avistdis Likas. Member, IEEE, and Dimitrios T Fotiadis

Solving Partial Differential Equations Using

1 Artificial Neural Networks

by

. Wepreeat o et 10 v i and oundary o ot e sk by replcing
roblems usin

with the sum of piccewise fincar activation. funcic

il cmiary ks, Ths Pt s oty vk ) i o 0 5l secute Department of Chemical En

iastarmard sl . -

A e A T A Pasa Keith Rudd
Mhe 1 s arict we iew he problen rom  difrent anle

e s ok o (O v oot Ve present 2 method for slving both orisary dierstial : — cehmical Eneincorine and Material Seionces
Coupie ODE ot pern :L.;,c.,....,,,w.m(m\, <quations (ODE'S) and partl diferetial squaions (°DE's) Received August Department of Mechanical Engineering and Material Sciences
s e we st o et b Soking + vares o (deiaed o ahogonal Do domin) e s on e fncion

Duke University

el bl snd s ompaions ik sluions Al onemion, capabiio of fdlonand sl retnore
wing the Galekekin it clement tetliod or several caies of by e

and results in the construction of 2 solution Writen in &




Neural-Network Methods for Boundary Value
Problems with Irregular Boundarics

Isaa Elias Lagaris, Asistidis C. Likas, Member, IEEE, and Dimitrios G. Papageorgion

svsract boundary y ytc foru:
conditons (Dirichet or Neumans) defined on boundaries with ) superio inerpolation propertes as compared fo well-25-
p e becn successully treated wing sgmoidal s s sach ae s atocents (1}, 12
ks 3) small munber of parameter

s that el 4 siabilny for efticient implementation on parallel com-
Iocate. %0 3¢ o ofer  seasonable representation. Twa nermorke putess:

Artificial Neural Networks for Solving Ordinary
and Partial Dillerential Equations

Isaac Elias Lagaris. Aristidis Likas. Member, 7EEE, and Dimitrios 1. Fotiadis

Abraci—We prescat u method 10 solve uital nd boundary Gf @ feedforward neural nerwork by seplacing cach spline
vaiue probiems 1ng arifial newral networks, A tial Solflon  wich the sum of piecenise Lineas activation fuactions that

p o i wriin 2 s of o part. Thi
corespond to the hidden s This method consi

eyt iy ot b sy oo b e B . e e

20 adjutable parameters. Th second part 1 consructd o 3¢ 13 s and s general sequies masy spl

o 0 affct the ol boundary conditons. This pat svalves  SOSEAUSAy etork paraetrs) i andes o yicd

Solutions. Fusth casy to extend these e
to multidimensional domaiss,

Lo this asicle we view the problem fiom 2 different angle.
" We present 2 method for solving both ordisary diffrential

ing

5. equitions (ODES) and partial differencial equations (PDE's)
(defined on orthogonal box dornains)tha rlics on the iancton
approsimation capabiltes of fosdforward. newsl networks

wsing the Galekrkin Rt clement method for several <256 of 41 resuls n the construction of a solution writen i @

RNAL OF COMPUTATIONAL PHYSICS 91, 11

Neural Algorithm for cquations'

Machine learning to solve PDEs?

Journal of Computationl Physcs 375 (201) 1339-1364

Contents lsts available at ScienceDirect

Journal of Computational Physics

ELSEVIER www.elssvier.com/iocatelicp

DGM: A deep learning algorithm for solving partial differential

L)
Justin Sirignano®*, Konstantinos Spiliopoulos”

= Unversiy of s rbene Champeig,Urbene, Unced St o Amerce
mston niversiy, Bosan,

Department of Electrical Engineering, Polytechnic Institute of New York,
Brooklyn, New York 11201

Solving Partial Differential Equations Using

1 Artificial Neural Networks

Dy
Department of Chemical En
Pasa Keith Rudd

Received August Departument of Mechanical Engineering and Material Sciences
Duke University




Machine learning to solve PDEs?

Journal of Computational Physics 378 (2019) 686-707

Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

Arifi  Physics-informed neural networks: A deep learning n _
Check for Smg

framework for solving forward and inverse problems involving | %=
nonlinear partial differential equations

M. Raissi?, P. Perdikaris ™*, G.E. Karniadakis?

2 Division of Applied Mathematics, Brown University, Providence, RI, 02912, USA os
b Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA, 19104, USA




Preliminaries on neural networks

A neural network unit:

Hyp(v) =o( IV xv+ b))

GRNTL X7 ERNnxl



Preliminaries on neural networks

A neural network unit:
H = X
wo) =6 W, xv+ b )
GRNHX? ERNnxl

A multilayer neural network with linear output:

ug(v) =W x Hy, ,0oHy, ,0---0Hpy (v)+0b



Preliminaries on neural networks

A neural network unit:
H = X
wav) =o( W xv+ D)
ERNHX? ERNnxl

A multilayer neural network with linear output:

ug(v) =W x Hg, ,oHy, ,0---0Hp (v)+Db

Theorem: Universal approximation (K. Hornik)

A neural network can approximate any smooth function arbitrarily close provided
a sufficient number of neurons V,,.




Preliminaries on neural networks

A neural network unit:
H = W X b
wp(v) = ¢( I xv+ b )
E]RNnX? ERNTLX1

A multilayer neural network with linear output:

UQ(V) =W X H9L71 O H9L72 O---0 H91 (V) +b

Proposition: Backpropagation (D. Rumelhart, G. Hinton & R. Williams)

Provided ¢ is differentiable, the backpropagation algorithm makes it possible to

symbolically computes any derivative of uy and in particular, %.




Data-driven versus Model-based

Example: Traffic density estimation

Density

o7 » 2-D map (spatiotemporal diagram)
°¢  » colormap = density

» Black dots are measurements (sparse)

Position [km]

0.00 0.25 0.50 0.75 1.00 125 150 175 2.00
Time [h]

Real density - Simulation
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Example: Traffic density estimation

Estimated Density
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Example: Traffic density estimation

Estimated Density

o7 » 2-D map (spatiotemporal diagram)
°¢  » colormap = density
g »»  » Black dots are measurements (sparse)
£ ** » Model for traffic
b ou ou
02 7+V 1—2u)— =0
gt Vit ) 9

Time [s]

Estimated density - Model



Example: Traffic density estimation

Density
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> » 2-D map (spatiotemporal diagram)
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Data-driven versus Model-based

Example: Traffic density estimation

Estimated Density

v

2-D map (spatiotemporal diagram)

v

colormap = density

v

Black dots are measurements (sparse)
Model for traffic
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Position [m]
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200 400 600 800
Time [s]

Estimated density - Model



Data-driven versus Model-based

Data-driven

© Good estimation if large dataset
© Robust to noise and disturbances
© No curse of dimensionality

© Can infer hidden pattern

@ Large computational time

@ No convergence proof

@ Require a large dataset
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Data-driven versus Model-based

Data-driven Model-based
© Good estimation if large dataset ©® No measurements needed
© Robust to noise and disturbances © Fast to compute
© No curse of dimensionality @ Error bounds on the solution
© Can infer hidden pattern © Sometimes not robust to noise
@ Large computational time @ Require a precise model
@ No convergence proof @ Subject to curse of dimensionality
@ Require a large dataset

Can we use both Data-driven and Model-based simulation tools?
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Physics-Informed Neural Network (PINN)

Machine Learning Differential Equation
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Machine Learning Differential Equation
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Optimize a PINN
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Optimize a PINN
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Optimize a PINN
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Optimize a PINN
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Optimize a PINN
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» Primal-dual optimization can solve the previous problem:
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Optimize a PINN

N,

2 phy
*__ u@(tu l'L) - yz) 1 Oug
0" = argming , max E N + )\N BN

=1 phy ]_

2
%0 1p w0y 4 [ueutﬁ’,wf))

= argming , max L(0)

» Primal-dual optimization can solve the previous problem;
» About the number of physics points Ny,

* New dataset: NV + Nppy;
e The confidence in the model relates to the number of physics points;

» The operator NV, can be defined with uncertain parameters = identification.
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PINN example: Traffic density estimation

Density

s » 2-D map (spatiotemporal diagram)

» colormap = density

Position [m]

» Black dots are measurements (sparse)
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PINN example: Traffic density estimation

Estimated Density

v

2-D map (spatiotemporal diagram)

v

colormap = density

v

Black dots are measurements (sparse)
Model for traffic
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PINN example: Traffic density estimation

Estimated Density

v

2-D map (spatiotemporal diagram)

v

colormap = density

v

Black dots are measurements (sparse)
Model for traffic

v

Position [m]

200 400 600 800
Time [s]

Estimated density - PINN



Advantages and drawbacks of PINN

PINN summary

© Good estimation with small/large
dataset

© Robust to noise and disturbances
© No curse of dimensionality

© Can infer hidden pattern

© Model tuning

© Large computational time

@ No convergence proof



Advantages and drawbacks of PINN

PINN summary Challenges

© Good estimation with small/large » Improve the convergence
dataset ¢ Less stochastic output (robust w.r.t.
© Robust to noise and disturbances training)
] _ _  Fastest convergence

©® No curse of dimensionality « Conditions for convergence
© Can infer hidden pattern » Prove approximation capacity for a
© Model tuning broader class of operators A
@ Large computational time » Solve strongly coupled systems

@ No convergence proof (multiple PDEs)



Perspectives for PINN

General perspectives:
» Investigate other neural network architectures (LSTM, Convolutional network ...);
» Change the training procedure (primal-dual update, ...)

» Use confidence intervals over several optimizations
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Perspectives for PINN

General perspectives:
» Investigate other neural network architectures (LSTM, Convolutional network ...);
» Change the training procedure (primal-dual update, ...)
» Use confidence intervals over several optimizations
Control perspectives:
» Extend the current work to real-time observation
» Use reinforcement learning to compute a control action
Broader perspectives:

» Use the PINN methodology in other domains (fluid mechanics, signal processing,
astrology...)

» Increment the framework for use in different contexts (?)
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