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Context

Figure 1: Wind farm and different control

strategies for maximizing its electric produc-

tion (figure from [1]).

Most systems are affected by disturbances and potential

extreme disruptions that can affect their optimal behaviour

and performances, and lead to system faults or anomalies.

To reduce these negative impacts, resilience aims at adap-

tation to maintain good performances. Replacing the fossil

fuels by renewable energies requires to develop efficient and

resilient green power plants, and in particular wind farms.

However, the control of a cluster of different turbines in

a wind farm is a challenging task because of the interac-

tions between the wakes and the turbines: modifying the

control on one wind turbine affects its wake, which in turn

modifies the wind characteristics (velocities, turbulence, en-

ergy) feeding the other downstream turbines, see Figure 1.

Figure 2: (a) Two wind turbines with constant

(left) to time-varying (right) control inputs. (b)

Two wind turbines with different incident wind

flow: the resulting wake induces a different coupling

depending on the incoming wind orientation. Fig-

ures from [1], [2].

In short, the different wind turbines are coupled by the

flow and their control modifies it. The control objective

is either (or both) to maximize the total electric power

generated by the farm, but also to prevent potential

damages and fatigue on the wind turbines. Besides,

any change in the incoming wind speed and orientation

results in new boundaries conditions on the incoming

flow and also in a different coupling between the wind

turbines, see Figure 2.

The flow and the fluid structure interaction are classi-

cally modeled using the Navier Stokes equations, whose

computational load is not compatible with real-time

resilient control objectives. On the other hand, too sim-

plistic industrial models [3]–low fidelity models– are well-

fitted for feedbacks yet may fail to capture the flow

behaviour and its nonlinearities, such as advection. Consequently, different compromises have been



proposed between high and low-fidelity models, such as Large Eddy Simulations [4], reduced Partial

Differential Equations (PDE) models [5], [6], and data-driven Reduced Order Models (ROM)

models [7], [8] in order to propose less or more adaptive and efficient control strategies. Controlling

a wind farm thus requires skills from both fluid mechanics and control theory.

Prisme is a pluridisciplinary laboratory and this work requires interactions between its two

departments. Another concomitant internship, with a fluid mechanics major, is proposed to develop

a reduced model of a wind turbine wake, using a porous disk representation of the wind turbine.

The resulting model and collected data will feed the present internship reflexion about the modeling

to develop control solutions.

Planned work

The coupling between the wind turbines will be investigated through both PDEs models (trans-

port, Burgers or Ginzburg-Landau equations [5], [6]) and CFD low-dimensional surrogate models

using data-driven ROM resulting from the other internship. As explained hereinbefore, the interest

of data-driven models is to provide reduced models, often linear ODEs, whose control is an easy

task; however such approaches often capture the flow dynamics only at a given configuration of the

incoming flow: they need to be trained on sufficiently rich data to provide a representative model

over a wide range of incoming winds and wind farms configurations. On the contrary the precited

PDEs models are obtained from the Navier Stokes equations after some simplifying assumptions

so they can capture the nonlinearities of the flow dynamics whatever the climatic circumstances.

Anyway, the proposed modelings are required to be simple enough to be analyzed and compatible

with real-time control objectives. Their validity will be compared with high/medium-fidelity sim-

ulations such as Nrel Fast and the fluid mechanics internship results. An internal model based

Model Predictive Control (MPC) will then be developed to investigate tracking and maximization

of the total electric power produced by the farm despite external disturbances, and compared to

results obtained using existing results such as [9], [7], [10].

After a solid bibliographic work, modeling will first be studied in 1D using both PDE and ROM

models, and the accuracy of the resulting models will be compared to CFD results; 2D will be

investigated afterwards. In the meantime, the control efficiency, robustness and computational

cost will be evaluated with respect to higher fidelity simulation results and data obtained by the

other internship student.

Profile and required skills: Master 2 student in control theory or applied mathematics; with

good programming skills (Scilab & Scicos or Matlab & Simulink). Advanced proficiency in English

is also expected, as well as scientific curiosity since this work requires regular exchanges with the

other internship student from another scientific community.



How to apply? Please send us cover letter, CV, grades and ranking for the last two years

including a transcript of the current academic records –even if incomplete– as well as any recom-

mendation letter to:

• Matthieu.Fruchard@univ-orleans.fr 02-48-23-80-14

IUT de Bourges, 63, Avenue de Lattre de Tassigny, 18 020 BOURGES

• Cedric.Raibaudo@univ-orleans.fr 02-38-49-24-59

Polytech’ Orléans, 8, Rue Léonard de Vinci, 45 072 ORLEANS

Candidate recruitment is subject to ZRR approval (at least one month delay so ).

Duration: February/March-June/July 2024 (5 months)

Location: Laboratoire Prisme, Orléans or Bourges, France.

Supervisors:

• Matthieu Fruchard, Nacim Ramdani, Automatique Team (Control Theory), IRAUS

Department

• Cédric Raibaudo, Nicolas Mazellier, Ecoulements et Systèmes Aérodynamiques

Team (Fluid Mech.), FECP Department.
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