PHD TOPIC OF THE EUROPEAN SEED PROGRAM

Control of HVAC systems of a building: towards ambient air conditioning, at the

lowest energy and environmental cost

IMT Atlantique Bretagne-Pays de la Loire École Mines-Télécom

SUMMARY

1. HVAC SYSTEMS

Definition, key concepts, energy production technologies

- 2. CHALLENGES & OBJECTIVES
- 3. PARTNERS
- 4. THE PhD

The « seed » program, working conditions,

1.1. What is it?

HVAC (Heating, Ventilation, and Air Conditioning) is a system or technology used in buildings to control the indoor climate, including temperature, humidity, and air quality.

- Heating (H): responsible for maintaining a comfortable temperature in the indoor space during colder seasons..
- Ventilation (V): replacing air within a space to ensure a continuous supply of fresh, oxygen-rich air. Proper ventilation helps remove pollutants, odors, and excess moisture, contributing to indoor air quality.
- Air Conditioning (AC): responsible for cooling indoor spaces during warmer weather. Air conditioning systems also help control humidity levels, contributing to comfort.

1.2. key concepts

Main components:

- Energy production systems
- Air processing units
 - FCU: Fan Coil Unit
 - AHU: Air handling Unit
- Distribution systems
 - Pipes and ducts
 - Pumps and fans
- Monitoring and Control systems

1.2. key concepts

1.3. Energy production system

Heat and cooling Production technologies:

Boilers

Atlantique

Bretagne-Pays de la Loire

École Mines Télécom

- Combined Heat and Power units (CHP)
- Combined Cooling, Heat and Power (CCHP)

SEE

Societal, Energy

Environmental 8

Digital transition

ΈΟΓΙΑ

- Compression Heat pumps (HP) and chillers: air source, geothermal
- Absorption Heat pumps and chillers

- Biomass, biofuels and waste
- Electricity: grid, PV and wind
 - Geothermal

Energy sources

Gas

```
Ambient air
```


2.1. Challenges (1/2)

Two levers towards sustainable and decarbonized systems:

- Usage of renewable energy and decarbonized sources
 - Intermittent sources and time dependent energy availability
 - Time-variant energy tariff on the grid
 - An increased reliance on demand response
- Increase the efficiency to consume less energy and reduce emissions
 - Usage of more complex combination of technologies to optimize the usage of the primary energy
 - Optimize operations for continual reduction of energy consumption and GHG emissions

Advanced control strategies taking into account developments in these systems and their environment

2.1. Challenges (2/2)

- ► A complex system...
- Nonlinear behavior of the systems: partial load efficiencies, Hexs, flow mixing
- Different dynamics and time scales: building's envelope, energy production dynamics, Hexs dynamics
- Large scale buildings: a big number of components and independent thermal zones

Difficulty in obtaining a realistic and tractable model, yet necessary for an effective control method !

- A complex trade-off between comfort, energy consumption & GHG emission...
- Comfortable thermal and hygrometric environment can be already a challenge: distributed sensors and actuators, not necessarily co-localized.
- Energy costs and environmental concerns must be taken into account in the control problem !

2.1. Objective

Scientific objectives:

- Leading-edge control strategy for HVAC: predictive optimal control techniques, that take benefits from the knowledge of the future tracking point, weather forecast, ect...

Trade-off between comfort / energy consumption & GHG emissions

Need for fast, realistic and calibrated models of the HVAC and the building;
current research aim to promote physical and parametrized model of sufficient complexity. Very few work on <u>physics-informed</u> machine learning...

Perspective with reinforcement learning approach

Data-based approach; Data-driven approach; no expected model of the process?

Practical concerns: Prohibitive quantity of data and learning time needed, data

One solution: direct control-policy learning, but physics-informed?

2.1. Objective

Operational objective:

Implementation of the control strategy on a real HVAC system:

Veolia will provide a real case study selected from their managed buildings

Need to adapt the method to the real system: available sensors and actuators, available data and information, etc...

Necessity to limit the scope of required modification: pragmatic approach

Combining data and physics need to be guided by the reality of the case study

An interdisciplinary challenge !

To deal with this challenge ask for: HVAC engineering, physical modeling (energy, thermodynamic, fluid), model reduction, dynamical system theory, and artificial intelligence (optimization, Machine learning)

A leading technological university

Involved departments:

- "Automation, Production and Computer Sciences"
- Department "Energy and Environmental Systems »

SEED

Environmental 8

Digital transition

A company that provides gamechanging solutions that are both useful and practical for water, waste and energy management.

Involved department:

 Sientific and Technological Expertise department (S&TE)

3.1. IMT Atlantique: "Automation, Production and Computer Sciences"

Department: around 45 Permanent academic staff, including 20 professor, and 25 PhD students

https://www.imt-atlantique.fr/en/about/departments/dapi/research

Three main themes:

- Software engineering and distributed systems.
- Optimisation and decision-making.
- **Cyber-physical system:** team CODEx (Command, Observation, Diagnostic and Experimentation), who will be involved in this PhD

Research: dynamical systems, robust and optimized control and observers, neural network based predictive control.

Applications:

- Autonomous vehicles (on & off road)
- multi-energy and industrial process control

Energy transition: sustainable energy or low carbon

- Distributed management of multi-energy systems
- Nuclear energy production control
- Energy optimization

3. PARTNERS3.2. IMT Atlantique: "Energy and Environmental Systems"

Department: around 60 Permanent academic staff, including 25 professors, 9 administrative and technical staff, and ~25 PhD students

https://www.imt-atlantique.fr/en/about/departments/energy-and-environmental-systems/research

Three main teams:

- Team TEAM: Water Air Metrology Processing
- Team VERTE: Energy and resources recovery from residu and emission processing
- Team OSE: Optimization systems Energy, who will be involved in this PhD

Research: Energy systems modelling (demand, conversion, storage and distribution), model reduction, optimization methodologies for energy integration

Applications:

- Multi-energy systems and their interaction with energy networks
- Optimization of design of multi-energy systems
- Optimization of management and control energy systems

3.3. Veolia

École Mines-Télécom

14

3.3. Veolia

3 MAIN

BUSINESSES

IN NUMBERS

WATER

- 111 million people supplied with drinking water
- 97 million people connected to wastewater systems
- 4,130 drinking water production plants managed
- 3,506 wastewater treatment plants managed

WASTE

- **46** million people provided with collection services on behalf of municipalities
- 61 million metric tons of treated waste
- 533,759 business clients
 - 823 waste processing facilities operated

ENERGY

44 TWh produced

- 46,922 thermal installations managed
 - 680 heating and cooling networks managed
 - 2,716 industrial sites managed

3.3. Veolia

SOLUTIONS TO ADDRESS OUR MAIN CHALLENGES

ECONOMY & REGENERATION OF RESOURCES

Veolia invents green energy systems, recovers waste in the form of materials or energy, and promotes the recycling and reuse of wastewater and plastics.

DECARBONIZATION

Veolia designs solutions for the climate that decarbonize our lifestyles and production methods and adapt them to the consequences of climate disruption.

DEPOLLUTION

Water, soil, air... Veolia offers a range of solutions to treat all types of pollution. The Group is a recognized player in the treatment of hazardous waste and degraded soil, and is a specialist in indoor air quality.

3.3. Veolia

A WORLD OF SOLUTIONS FOR LOCAL AUTHORITIES & INDUSTRIES

Discover our solutions on our Website: activities.veolia.com

3.3. Veolia

18

4. PRACTICAL ASPECTS OF THE PHD

4.1. the « SEED » program - industrial track

Starting date : September 2024

PhD Timeline

- 24 months at IMT Atlantique (Nantes)
- 9 months at Veolia (Aubervillier)

3 months a research collaboration with an international academic partner

General information

https://www.imt-atlantique.fr/en/research-innovation/phd/seed

Application process:

https://www.imt-atlantique.fr/en/research-innovation/phd/seed/application

Please respect the application process and the deadlines

4. PRACTICAL ASPECTS OF THE PHD

4.2. working conditions

Directly

transferred

to the PhD

students

Managed

globally by the PMB

Living allowance (= gross salary including all French wage costs) \rightarrow 3700€ per month

Mobility allowance (mandatory for all students): support to settle in \rightarrow 70€ per month

Family allowance: only for students in family-like situations) \rightarrow 130 \in per month

Research, travel and mobility costs: covers

infrastructure, software, etc., research-related costs, notably travel (conferences, workshops), and financial support for mobility periods at international or nonacademic partners \rightarrow 500€ per month

X

Training expenses: support to execute training program (7 pillars) → 125€ per month

5. BIBLIOGRAPHY

1. Pierre Clément Blaud, Philippe Chevrel, Fabien Claveau, Pierrick Haurant, Anthony Mouraud, From multi-physics models to neural network for predictive control synthesis, Optimal Control Applications and Methods, 2021, (10.1002/oca.2845)

2. Pierre Clement Blaud, Pierrick Haurant, Philippe Chevrel, Fabien Claveau, Anthony Mouraud, Multi-flow optimization of a greenhouse system: A hierarchical control approach, Applied Energy, 2023, 351, pp.121840. (10.1016/j.apenergy.2023.121840)

3., Pierre Clement Blaud, Philippe Chevrel, Fabien Claveau, Pierrick Haurant, Anthony Mouraud, ResNet and PolyNet based identification and (MPC) control of dynamical systems: a promising wayIEEE Access, 2022, 2022, pp.3196920. (10.1109/ACCESS.2022.3196920)

4. Pierre Clément Blaud, Pierrick Haurant, Fabien Claveau, Bruno Lacarrière, Philippe Chevrel, Modelling and control of multi-energy systems through multi-prosumer node and economic model predictive control, International Journal of Electrical Power & Energy Systems, 2020, 118 (105778), (10.1016/j.ijepes.2019.105778)

5. Getnet Tadesse Ayele, Mohamed Tahar Mabrouk, Pierrick Haurant, Björn Laumert, & Bruno Lacarrière (2019). Optimal placement and sizing of heat pumps and heat only boilers in a coupled electricity and heating networks. Energy, 182, 122-134.(10.1016/j.energy.2019.06.018)

6. B. Nérot, N. Lamaison, R. Bavière, B. Lacarrière, & M.T. Mabrouk (2021). Techno-economic relevance of absorption chillers to enhance existing 3GDH. Energy Reports, 7, 282-293. (10.1016/j.egyr.2021.08.144)

7. Anne-Geneviève Lemelle, Mohamed Tahar Mabrouk, Bruno Lacarrière. (2018). Assessment of a datadriven model of a heat pump using synthetic data generated from a physical dynamic model: 35th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, June 2018, Copenhagen, Denmark (10.11581/dtu.00000267)

8. L. von Rueden et al., "Informed Machine Learning – A Taxonomy and Survey of Integrating Prior Knowledge into Learning Systems," in IEEE Transactions on Knowledge and Data Engineering, vol. 35, no. 1, pp. 614-633, 1 Jan. 2023, (10.1109/TKDE.2021.3079836)

9. Chayan Banerjee, Kien Nguyen, Clinton Fookes, & Maziar Raissi. (2023). A Survey on Physics Informed Reinforcement Learning: Review and Open Problems. (10.48550/arXiv.2309.01909)

10. J. B. Rawlings, D. Q. Mayne et M. Diehl, Model Predictive Control: Theory, Computation, and Design, 2eéd. Nob Hill Publishing Madison, WI, 2019

