

Institut de Recherche en Informatiques, Automatique et Signal

Title	Advanced Control for Collaborative Mobile Robots in Urban
	Environments
	Architectures de Commande Collaborative d'une flotte de ROBOTs (ACCROBOT)
Supervisor(s)	Michel Basset (Director, Full professor, IRIMAS, UHA)
	Jonathan Ledy (Co-supervisor, Research engineer, IRIMAS, UHA)
	David Vieira (Co-supervisor, Associate Professor, IRIMAS, UHA)
Laboratory	Institut de Recherche en Informatique, Mathématiques, Automatique et Signal
	IRIMAS UR 7499, Université de Haute-Alsace (UHA)
Place	ENSISA, 12 rue des Frères Lumière,
	68093 Mulhouse Cedex, France
Keywords	Collaborative control, multi-agent system, energy reduction
Project description	The ACCROBOT project is part of the ongoing research efforts of the MIAM team
	at IRIMAS Institute. It aims to advance research in "Experimental Modeling,
	Identification, Advanced Control, and Monitoring," leveraging the team's
	expertise. The project focuses on the collaborative control of robot fleets and
	aligns with various projects undertaken by the team in this domain.
	Among the research themes, collaborative multi-robot systems are increasingly
	active issues related to pavigation and the safety of autonomous robot fleets
	represent a complex multi agent multi objective problem that requires
	inpovative control architectures. This project proposes developing collaborative
	control strategies for managing autonomous rebet floots using advanced control
	control strategies for managing autonomous robot neets using advanced control
	methods. The originality of this project lies in its structured approach, from the
	design of control laws through simulation to integration on real platforms.
	Validation in real conditions, as described in the literature, represents a
	significant challenge, providing a concrete dimension to the results. The main
	objective is to propose new collaborative control architectures using theoretical
	tools like Model Predictive Control (MPC) and exploring new artificial intelligence
	techniques (Reinforcement Learning, Data Driven, etc.).
	The project will also account for mathematical models of robots that closely
	reflect their dynamic behavior, unlike the point-mass models typically described
	in the state-of-the-art multi-agent literature. This approach allows better
	consideration of constraints (variabilities, parametric uncertainties, unknowns,
	energy consumption) in synthesizing new control strategies.
	In addition to theoretical advancements, the project will involve advanced
	simulators for testing, proving, and validating proposed solutions. The open-
	source simulator CARLA will be used extensively allowing for simulation of
	structured environments with communicating vehicle floats, where the control
	of each agent can be managed. Environmental according information information
	or each agent can be managed. Environmental perception information will
	complement the necessary data in the global collaborative control architecture
	to ensure fleet navigation safety.

Institut de Recherche en Informatique, Mathématique	TE-ALSACE es, Automatique et Signal
	The final objective is to integrate control algorithms into a dedicated robot
	environment (ROS). This middleware tool facilitates interfacing betwee
	software and hardware layers of the platforms used Real-world testing an
	validation of various proposed approaches will be conducted in a shared urba
	environment, as exemplified by the AMI France 2030 project.
	The contribution of the thesis will be achieved according to the followir
	methodology and timeline:
	1. Literature Review on Collaborative Control Approaches (Centralize Distributed)
	2 Development of Collaborative Controls (Stability Analysis Ontimization
	2. Definition of a Clobal Collaborative Control Architecture
	Development of a Validation Model under CARLA Simulator
	4. Development of a validation Model under CARLA Simulator
	5. Integration of Control Architecture in Real Case
References	[1] Tihay, D., & Perrin, N. (2018). Robotique collaborative : perception et attente des industriels. Hygiène et Sécurité du Travail, INRS, 250, 50-57.
	[2] Lemonnier S., Simonin J., Lanfranchi J-B. (2023). Robots collaboratifs dar
	l'industrie française en 2021 : acceptation des opérateurs et points de vu
	d'industriels. In Proceedings of the 34th Conference on l'Interaction Humain
	Machine (IHM '23). Association for Computing Machinery, New York, NY, US/
	Article 18, 1–8. <u>https://doi.org/10.1145/3583961.3583979</u>
	[3] Ammour, M., Orjuela, R., Basset, M. (2022). A MPC Combined Decisic
	Making and Trajectory Planning for Autonomous Vehicle Collision Avoidance
	IEEE Transactions on Intelligent Transportation Systems, 23(12), 24805-24817.
	[4] Schader, M., Luke, S. (2023). Exploring Planner-Guided Swarms Running of
	Real Robots. In : Mathieu, P., Dignum, F., Novais, P., De la Prieta, F. (eds) Advance
	In Practical Applications of Agents, Multi-Agent Systems, and Cognitive Mimetic
	The PAAMS Collection. PAAMS 2023. Lecture Notes in Computer Science, vi
	13955. Springer, Cham. <u>https://doi.org/10.100//9/8-3-031-3/616-0_26</u>
	for Collision Avoidance of a Elect of AVS Check for undates. <i>Recent Developmen</i>
	in Model-Based and Data-Driven Methods for Advanced Control and Diagnosi
	297.
Job description	Thesis start date and duration: October 2024, for a 36-month contract
	Funding and salary: Academic funding. Salary according to current regulations
	2100€ monthly gross salary
	Required skills: You have a general engineering background or universit
How to apply	equivalent with a specialization in Automation and Control and/or Mechatronic
	A solid estantific background in dynamia systems medalling and control theory
	A solid scientific background in dynamic systems modelling and control theory
	requested. You are autonomous and curious. You have the ability to work as pa
	of a team and to engage in dialogue. You are fluent in English.
	Application procedure: Please send CV, Master's/engineer's transcripts from the
	last two years and cover letter.
	Contacts: Michel BASSET (michel.basset@uha.fr). David VIEIRA (david.vieira